Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO2 photoanodes
نویسندگان
چکیده
We report the fabrication and testing of dye sensitized solar cells (DSSC) based on tin oxide (SnO2) particles of average size ~20 nm. Fluorine-doped tin oxide (FTO) conducting glass substrates were treated with TiOx or TiCl4 precursor solutions to create a blocking layer before tape casting the SnO2 mesoporous anode. In addition, SnO2 photoelectrodes were treated with the same precursor solutions to deposit a TiO2 passivating layer covering the SnO2 particles. We found that the modification enhances the short circuit current, open-circuit voltage and fill factor, leading to nearly 2-fold increase in power conversion efficiency, from 1.48% without any treatment, to 2.85% achieved with TiCl4 treatment. The superior photovoltaic performance of the DSSCs assembled with modified photoanode is attributed to enhanced electron lifetime and suppression of electron recombination to the electrolyte, as confirmed by electrochemical impedance spectroscopy (EIS) carried out under dark condition. These results indicate that modification of the FTO and SnO2 anode by titania can play a major role in maximizing the photo conversion efficiency.
منابع مشابه
Fabrication of dye sensitized solar cells with a double layer photoanode
Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...
متن کاملInvestigation of Photovoltaic Properties of 1,8-Naphthalimide Dyes in Dye-sensitized Solar Cells
In this paper we selected two metal-free dyes (Dye 1 and Dye 2) based on 1,8-naphthalimide. The proposed dyes were sensitized from acenaphthene as the starting material by standard reactions. Spectrophotometric measurements of the organic dyes in DMF and on TiO2 substrate were carried out in order to assess changes in the status of the dyes. Maximum absorption wavelengths for Dye...
متن کاملThe influence of 1D, meso- and crystal structures on charge transport and recombination in solid-state dye-sensitized solar cells
We have prepared single crystalline SnO2 and ZnO nanowires and polycrystalline TiO2 nanotubes (1D networks) as well as nanoparticle-based films (3D networks) from the same materials to be used as photoanodes for solid-state dye-sensitized solar cells. In general, superior photovoltaic performance can be achieved from devices based on 3-dimensional networks, mostly due to their higher short circ...
متن کاملHigh Efficient Transparent TiO2 Nanotube Dye-Sensitized Solar Cells: Adhesion of TiO2 Nanotube Membrane to FTO by Two Different Methods
In order to fabricate transparent TiO2 nanotube dye-sensitized solar cells, anodically growth nanotube membranes are detached from Ti substrate by a re-anodization method. The membranes are transferred on FTO glass by two different methods. At the first one, 100mM Ti-isopropoxide is used to make TiO2 nanoparticles for adhering TiO2 nanotube membranes to FTO and ...
متن کاملThe investigation on different light harvesting layers and their sufficient effect on the photovoltaic characteristics in dye sensitized solar cell
Titanium dioxide-based nanofibers (TiO2 nanofiber) were prepared by an electrospinning technique. The electrospun composite fibers were synthesized at different concentrations of titanium isopropoxide (25.35, 50.69, 76.05 wt%) and calcinated at different temperatures (450 oC, 650 oC and 850 oC) for 2 h. The diameters of nanofibers decreased by increas...
متن کامل